

Integrated Water Resources Management

– Model Region Mongolia –

MoMo Fact Sheet Biogas Pilot Plant at the Central WWTP Darkhan

SPONSORED BY THE

Authors:

Dipl.-Geoecol. Christian Bruski Bauhaus-Universität Weimar

M.Sc. Kivanc Fidan Passavant-Roediger GmbH

Editors:

Prof. Dr. Dietrich Borchardt Michael Schäffer Dr. Steffen Niemann Dr. Daniel Karthe Helmholtz Center for Environmental Research

Background

In the city of Darkhan wastewater from apartment houses is purified in a central wastewater treatment plant (WWTP). The produced **sewage sludge** is deposited in huge ponds, which however might cause a contamination of soil and groundwater. Furthermore nutrients and energy as resources of sewage sludge are wasted.

Ger-settlements, surrounding the strictly planned city of Darkhan, are not connected to a sewer system. People just use simple pit latrines. This leads to unsafe hygienic conditions as well as a contamination of soil and groundwater. That is why a new toilet system, called iPiT, is tested in Ger-settlements within the MoMo-project. The iPiT is a dry toilet. Urine and **feces** are collected separately in two different containers.

As a part of an **integrated sanitation system** an **anaerobic co-digestion** of sewage sludge from WWTP, feces from Ger-settlements and biodegradable waste from Darkhan region is supposed to be tested by running a **biogas pilot plant**.

Objective

The biogas pilot plant is constructed in a 40 ft shipping container. It consists of a control room, a storage & mixing section and a digestion section.

Fig. 1: Biogas pilot plant installed in a 40 ft shipping container (location: WWTP Darkhan)

There are seven different tanks $(0,1 \text{ m}^3 - 2 \text{ m}^3)$ for storing and mixing substrates (fig. 2, left).

Two continuously stirred tank reactors (CSTR) made of stainless steel are built up in the digestion section (*fig. 2, right*). Each digester has got a volume of 750 L. Every day each digester is fed with 37,5 L of substrate which leads to a solids retention time (SRT) of 20 days. One digester is just fed with sewage sludge, in the other digester a co-digestion of sewage sludge, feces and organic waste is carried out. An electrical heating, surrounding the digesters, keeps the temperature at 37°C (mesophilic conditions). The produced biogas is counted with a gas meter and its composition is analysed by a gas analyser.

Feeding and mixing of the digester is automated and controlled by a programmable logic control located in the control room.

Fig. 2: Local operator of the plant explains storage & mixing section to inhabitants of Darkhan (left); digester (right)

Preliminary Results

The biogas pilot plant has been already run in and optimised in Weimar. A codigestion of sewage sludge from municipal WWTP Weimar and feces from public urine diverting dry toilets has been carried out. A stable process could be attained.

In spring 2012 the container was transported from Weimar to Darkhan. During summer time the co-digestion of sewage sludge and feces from Gersettlements collected in the iPiTs has been started and resulted in a stable process.

There are two main challenges which are in the centre of research running the biogas pilot plant in Darkhan:

1. Connecting new toilet (iPiT) and transport system to the biogas pilot plant.

When feces from ger settlements arrive at the wastewater treatment plant, they have to be pre-treated in a receiving area before feeding the biogas plant. Due to its consistency and its pathogenicity handling of feces is very difficult. That's why a feasible receiving area has to be designed and tested. The connection of transport system and biogas plant has to be well organised.

2. Operating the biogas pilot plant under extreme climate conditions in Mongolia.

Feces collected in the iPiT will freeze during wintertime. As a consequence they are not available as a substrate for a co-digestion. So a discontinuous co-digestion has to be investigated.

Key Data

Location: Darkhan, Mongolia

49.507575 N, 105.926827 E

Manufacturer: Passavant-Roediger GmbH

Operator: Bauhaus-Universität Weimar,

University of Agriculture Darkhan

Type of pilot

Co-digestion of sewage sludge, feces from Ger-settlements

measure: and organic waste from Darkhan region

Size of the pilot

project: Two CSTR-digester (each 750 L); feed: 37,5 L/d

Project Partners & Contact Information

Dipl.-Geoecol. Christian Bruski

Bauhaus-Universität Weimar e-mail: christian.bruski@uni-weimar.de

PASSAVANT ROEDIGER

M. Sc. Kivanc Fidan

Passavant-Roediger GmbH e-mail: kivanc.fidan@passavant-roediger.de

Davaadorj Maygmarjav

MoMo-project e-mail: daagii_0017@yahoo.com

Ganbaatar Tsendeelee

University of Agriculture Darkhan e-mail: tsgan_baa@yahoo.com